



Laurent Lemoucheux, Jacques Rouden,* Méziane Ibazine, Franck Sobrio, and Marie-Claire Lasne.* Debenzylation of Tertiary Amines Using Phosgene or Triphosgene: An Efficient and Rapid Procedure for the Preparation of Carbamoyl Chlorides and Unsymmetrical Ureas. Application of Carbon-11 Chemistry.

Page 7291. In Table 1, the structures of compounds **10** and **11** should be interchanged. The corrected table is shown below.

TABLE 1. Reaction of BTC with Secondary Amines: Influence of the Added Base

entry	amine ^a	base	equiv	solvent	T (°C)	time ^b (h)	products	relative ratio (%) ^c
1	1	NEt ₃	2.2	THF	-78 to 20	0.15 then 16	2/3/8/7	46/0/54/0
2	1	NEt ₃	2.2	THF	20	0.10 then 1.25	2/3/8/7	93/7/traces/0
3	1	NEt ₃	2.2	CH ₂ Cl ₂	20	0.25 then 1	2/3/8/7	9/46/38/7
4	1	NEt ₃	2.2	CH ₂ Cl ₂	20	1 then 3	2/3/8/7	4/44/38/14
5	1	Na ₂ CO ₃	1	CH ₂ Cl ₂	0	30 then 0.75	2/3	84/16
6	1	Na ₂ CO ₃	1	CH ₂ Cl ₂	-78	0.15 then 2	2/3	78/22
7	1	Na ₂ CO ₃	1	THF	20	0.3 then 2	2/3	84 (68)/16
8	1	C ₅ H ₅ N	2.2	CH ₂ Cl ₂	20	0.5 then 3	2/3	100/0
9	1	C ₅ H ₅ N	2.2	CH ₂ Cl ₂	-78 to 20	0.16 then 3	2/3	100 (88)/0
10 ^d	1	C ₅ H ₅ N	1.2	CH ₂ Cl ₂	20	2 then 2	2/3	82 (60)/18
11	4	C ₅ H ₅ N	1.2	CH ₂ Cl ₂	0	0.15 then 1	5	100 (48)/0
12		C ₅ H ₅ N	2.5	CH ₂ Cl ₂	20	0.15 then 1		(81) ^e
13		C ₅ H ₅ N	2.5	CH ₂ Cl ₂	-50	0.15 then 1		(60)

^a All of the reactions were carried out with BTC (0.37 equiv) except entry 1 (reaction with phosgene): To BTC in CH₂Cl₂ at a given temperature were added the base then the secondary amine over a given period of time. After reaction, the mixture was hydrolyzed with 1 N HCl and extracted with CH₂Cl₂. ^b Time of addition followed by the reaction time. ^c Percentage of the reaction products determined by ¹H NMR. The isolated yields are given in parentheses. ^d BTC was added to the amine. ^e Crude yield, carbamoyl chloride **10** decomposed on silica gel.

JO0335847

10.1021/jo0335847

Published on Web 10/03/2003